Publications

Breakthrough on Routine Service Cycle Time Improvement – Leap Frog Concept, Duri Field, Indonesia

Proceedings Title : Proceedings, Indonesian Petroleum Association, Digital Technical Conference, 14-17 September 2020

Leap frog concept was created to address the loss of single joint rig agility and drive the cycle time average lower than ever. The idea is to move the preparation step into a background activity that includes moving the equipment, killing the well, dismantling the wellhead and installing the well control equipment/BOP before the rig came in. To realize the idea, a second set of equipment is provided along with the manpower. By moving the preparation step, the goal is to eliminate a 50% portion of the job from the critical path. The practice is currently performed in tubing pump wells on land operations. However, the work concept could be implemented for other type of wells, especially ESP wells. After implementation, the cycle time average went down from 18 hours to 11 hours per job, or down by ~40%. The toolpusher also reports more focused operations due to reduced scope and less crew to work with, making the leap frog operation safer and more reliable. Splitting the routine services into 2 parts not only shortened the process but it also reduces noise that usually appear in the preparation process. The team are rarely seen waiting on moving support problems that were usually seen in the conventional process. Having the new process implemented, the team had successfully not only lowered cycle time, but also eliminated several problems in one step. Other benefits from leap frog implementation is adding rig count virtually to the actual physical rig available on location, and also adding rig capacity and completing more jobs compared to the conventional rig. In other parts, leap frog faced some limitation and challenges, such as: limited equipment capability for leap frog remote team to work on stuck plunger, thus hindering its leap frog capability, and working in un-restricted/un-clustered area which disturb the moving process and operation safety.

Log In as an IPA Member to Download Publication for Free.