Publications

Success story of integrated subsurface study to deliver a successful infill drilling: Buntal-5 case study

Proceedings Title : PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION, Forty-Fifth Annual Convention & Exhibition, 1 - 3 September 2021

Buntal is a mature gas field located in South Natuna Sea Block B PSC. The field was discovered by well Buntal-1 and delineated by appraisal well Buntal-2. The field consists of multi-stacked sandstone reservoirs, which were deposited under fluvial deltaic environment. The major Buntal reservoirs have been produced since 2004 from two subsea wells. Buntal-3 was producing from zones Beta-1 and Beta-2, while Buntal-4 was a horizontal well producing from Zone-1C. Both of those wells had loaded up prior to Buntal-5 drilling. This paper describes the details of a multidisciplinary approach taken for the proposal of Buntal-5 infill drilling. An integrated geological and geophysical study were carried out to quantify resources and uncertainties of the remaining thin unproduced zones. In total, there are 8 virgin zones as Buntal-5 initial target namely Beta-0, Zone-1A, Zone-1B, Zone-1D, Zone-1E, Zone-2B, Zone-3 and Zone-3A. Max-trough seismic amplitude was utilized to identify geological features across for each Buntal reservoir. The result was then combined with geological concept based on its depositional environment to justify a reasonably higher hydrocarbon volume which can not be estimated only by wells’ data. A reservoir simulation study was also carried out to not only to evaluate production potential from the virgin zones but also to capture upside potential from the produced zones. Simulation history matching result on Zone-1C revealed early water breakthrough experienced by Buntal-4 well due to water cresting phenomena which left significant gas reserves. This result added upside potential to Buntal-5 which initially only targeted marginal remaining unproduced zones. The well was drilled at the end of 2019 and proven to be a major success. Buntal-5 open hole logs data indicate thicker and better virgin zones reservoir quality as expected by integrated geological and geophysical study. Furthermore, significant remaining gas was encountered in Zone-1C with actual gas water contact was within the simulation result proving the water cresting theory, the zone itself add well’s gas-in-place by 30% on top of the unproduced zones’ gas-in-place.

Log In as an IPA Member to Download Publication for Free.